Quantum scattering and adiabatic channel treatment of the low-energy and low-temperature capture of a rotating quadrupolar molecule by an ion.

نویسندگان

  • E I Dashevskaya
  • I Litvin
  • E E Nikitin
  • J Troe
چکیده

The capture rate coefficients of homonuclear diatomic molecules (H(2) and N(2)) in the rotational state j=1 interacting with ions (Ar+ and He+) are calculated for low collision energies assuming a long-range anisotropic ion-induced dipole and ion-quadrupole interaction. A comparison of accurate quantum rates with quantum and state-specific classical adiabatic channel approximations shows that the former becomes inappropriate in the case when the cross section is dominated by few partial contributions, while the latter performs better. This unexpected result is related to the fact that the classical adiabatic channel approximation artificially simulates the quantum effects of tunneling and overbarrier reflection as well as the Coriolis coupling and it suppresses too high values of the centrifugal barriers predicted by a quantum adiabatic channel approach. For H2(j=1)+Ar+ and N(2)(j=1)+He+ capture, the rate constants at T-->0 K are about 3 and 6 times higher than the corresponding values for H2(j=0)+Ar+ and N(2)(j=0)+He+ capture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Induced Dipole-Induced Dipole Potential and the Size of Colliding Particles on Ion-Quadrupolar Molecule Collision Rate Constants

Classical trajectory (Monte Carlo) calculation is used to calculate collision rate constants of ion-quadrupolar molecule interactions for the H¯+C2H2 system. The method presented here takes into account the effect of the induced dipole-induced dipole potential on ion-quadrupolar molecule collision rate constants. It is also assumed that the colliding particles have a d...

متن کامل

Nonadiabatic transitions between lambda-doubling states in the capture of a diatomic molecule by an ion.

The low-energy capture of a dipolar diatomic molecule in an adiabatically isolated electronic state with a good quantum number Omega (Hund's coupling case a) by an ion occurs adiabatically with respect to rotational transitions of the diatom. However, the capture dynamics may be nonadiabatic with respect to transitions between the pair of the Lambda-doubling states belonging to the same value o...

متن کامل

Ultra-Sharpening of Diamond Stylus by 500 eV O+/O2 + Ion Beam Machining without Facet and Ripple Formation

The price of single point diamond tools with a sharp tip is very high due to complex machining process and highly expensive machining equipments. Yet, the performance is not quite satisfactory. In this paper, we have presented a very simple and cost effective machining process for the sharpening and polishing of diamond stylus using low energy reactive ion beam machining (RIBM). In our method, ...

متن کامل

Effects of Hall current and ion-slip on unsteady hydromagnetic generalised Couette flow in a rotating Darcian channel

Unsteady hydromagnetic generalised Couette flow of a viscous, incompressible and electrically conducting fluid between two horizontal parallel porous plates Darcian channel in the presence of a uniform transverse magnetic field taking Hall current and ion-slip into account in a rotating system is investigated. An exact solution of the governing equations is obtained by Laplace transform techniq...

متن کامل

Quantum modeling of light absorption in graphene based photo-transistors

Graphene based optical devices are highly recommended and interested for integrated optical circuits. As a main component of an optical link, a photodetector based on graphene nano-ribbons is proposed and studied. A quantum transport model is presented for simulation of a graphene nano-ribbon (GNR) -based photo-transistor based on non-equilibrium Green’s function method. In the proposed model a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 21  شماره 

صفحات  -

تاریخ انتشار 2004